
CHAPTER 2

Contents Previous Next
CHAPTER 2 CDMS Python Application Programming Interface

2.1 Overview

This chapter describes the CDMS Python application programming interface (API). Python is a popular
public−domain, object−oriented language. Its features include support for object−oriented development, a rich
set of programming constructs, and an extensible architecture. CDMS itself is implemented in a mixture of C
and Python. In this chapter the assumption is made that the reader is familiar with the basic features of the
Python language.

Python supports the notion of a module, which groups together associated classes and methods. The import
command makes the module accessible to an application. This chapter documents the cdms, cdtime, and
regrid modules.

The chapter sections correspond to the CDMS classes. Each section contains tables base. If no parent, the
datapath is absolute.describing the class internal (non−persistent) attributes, constructors (functions for
creating an object), and class methods (functions). A method can return an instance of a CDMS class, or one
of the Python types:

Table 2.1 Python types used in CDMS

Type Description

Array Numeric or masked multidimensional data array. All
elements of the array are of the same type. Defined in
the Numeric and MA modules.

Comptime Absolute time value, a time with representation (year,
month, day, hour, minute, second). Defined in the
cdtime module. cf. reltime

Dictionary An unordered 2,3collection of objects, indexed by key.
All dictionaries in CDMS are indexed by strings, e.g.:

axes['time']

Float Floating−point value.

Integer Integer value.

List An ordered sequence of objects, which need not be of
the same type. New members can be inserted or
appended. Lists are denoted with square brackets, e.g.,

[1, 2.0, 'x', 'y']

None No value returned.

Reltime Relative time value, a time with representation (value,
units since basetime). Defined in the cdtime module.
cf. comptime

1/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch1_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch3_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch1_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch3_cdms_4.0.html

Tuple An ordered sequence of objects, which need not be of
the same type. Unlike lists, tuples elements cannot be
inserted or appended. Tuples are denoted with
parentheses, e.g.,

(1, 2.0, 'x', 'y')

2.2 A first example

The following Python script reads January and July monthly temperature data from an input dataset, averages
over time, and writes the results to an output file. The input temperature data is ordered (time, latitude,
longitude).

1 #!/usr/bin/env python
2 import cdms
3 from cdms import MV
4 jones = cdms.open('/pcmdi/cdms/obs/jones_mo.nc')
5 tasvar = jones['tas']
6 jans = tasvar[0::12]
7 julys = tasvar[6::12]
8 janavg = MV.average(jans)
9 janavg.id = "tas_jan"
10 janavg.long_name = "mean January surface temperature"
11 julyavg = MV.average(julys)
12 julyavg.id = "tas_jul"
13 julyavg.long_name = "mean July surface temperature"
14 out = cdms.open('janjuly.nc','w')
15 out.write(janavg)
16 out.write(julyavg)
17 out.comment = "Average January/July from Jones dataset"
18 jones.close()
19 out.close()

Line Notes

2,3 Makes the CDMS and MV modules available. MV defines arithmetic
functions.

4 Opens a netCDF file read−only. The result jones is a dataset object.

5 Gets the surface air temperature variable. 'tas' is the name of the variable in
the input dataset. This does not actually read the data.

6 Read all January monthly mean data into a variable jans. Variables can be
sliced like arrays. The slice operator [0::12] means take every 12th slice from
dimension 0, starting at index 0 and ending at the last index. If the stride 12
were omitted, it would default to 1.
 Note that the variable is actually 3−dimensional. Since no slice is
specified for the second or third dimensions, all values of those2,3 dimensions
are retrieved. The slice operation could also have been written [0::12, : , :].
 Also note that the same script works for multi−file datasets. CDMS opens

2/58

the needed data files, extracts the appropriate slices, and concatenates them into
the result array.

7 Reads all July data into a masked array julys.

8 Calculate the average January value for each grid zone. Any missing data is
handled automatically.

9,10 Set the variable id and long_name attributes. The id is used as the name of the
variable when plotted or written to a file.

14 Create a new netCDF output file named 'janjuly.nc' to hold the results.

15

Write the January average values to the output file. The variable will have id
"tas_jan" in the file.
write is a utility function which creates the variable in the file, then writes data
to the variable. A more general method of data output is first to create a
variable, then set a slice of the variable.
Note that janavg and julavg have the same latitude and longitude information
as tasvar. It is carried along with the computations.

17 Set the global attribute 'comment'.

18 Close the output file.

2.3 cdms module

The cdms module is the Python interface to CDMS. The objects and methods in this chapter are made
accessible with the command:

import cdms

The functions described in this section are not associated with a class. Rather, they are called as module
functions, e.g.,

file = cdms.open('sample.nc')

Table 2.2 cdms module functions

Type Definition

Variable asVariable(s)

Transform s into a transient variable.

s is a masked array, Numeric array, or Variable. If s is
already a transient variable, s is returned.
See also: isVariable.

3/58

Axis createAxis(data, bounds=None)

Create a one−dimensional coordinate Axis, which is not
associated with a file or dataset. This is useful for
creating a grid which is not contained in a file or dataset.

data is a one−dimensional, monotonic Numeric array.

bounds is an array of shape (len(data),2), such that for
all i, data[i] is in the range [bounds[i,0],bounds[i,1]]. If
bounds is not specified, the default boundaries are
generated at the midpoints between the consecutive data
values, provided that the autobounds mode is 'on' (the
default). See setAutoBounds.

Also see: CdmsFile.createAxis
Axis createEqualAreaAxis(nlat)

Create an equal−area latitude axis. The latitude values
range from north to south, and for all axis values x[i],
sin(x[i])sin(x[i+1]) is constant.

nlat is the axis length.

The axis is not associated with a file or dataset.

Axis
createGaussianAxis(nlat)

Create a Gaussian latitude axis. Axis values range from
north to south.

nlat is the axis length.

The axis is not associated with a file or dataset.

RectGrid createGaussianGrid(nlats, xorigin=0.0, order="yx")
Create a Gaussian grid, with shape (nlats, 2*nlats).

nlats is the number of latitudes.
xorigin is the origin of the longitude axis.
order is either "yx" (lat−lon, default) or "xy" (lon−lat)

4/58

 RectGrid

createGenericGrid(latArray,
lonArray, latBounds=None, lonBounds=None,
order="yx", mask=None)
Create a generic grid, that is, a grid which is not typed
as
Gaussian, uniform, or equal−area. The grid is not
associated
with a file or dataset.

latArray is a NumPy array of latitude values.
lonArray is a NumPy array of longitude values
latBounds is a NumPy array having shape
(len(latArray),2), of
latitude boundaries.
lonBounds is a NumPy array having shape
(len(lonArray),2),
of longitude boundaries.
order is a string specifying the order of the axes, either
"yx"
for (latitude, longitude), or "xy" for the reverse.
mask (optional) is an integer−valued NumPy mask
array, hav−
ing the same shape and ordering as the grid.

RectGrid
 createGlobalMeanGrid(grid)
 Generate a grid for calculating the global mean via a
regridding operation. The return grid is a single zone
covering the range of the input grid.

grid is a RectGrid.

 RectGrid

createRectGrid(lat, lon, order, type="generic",
mask=None)
Create a rectilinear grid, not associated with a file or
dataset.
This might be used as the target grid for a regridding
opera−
tion.

lat is a latitude axis, created by cdms.createAxis.
lon is a longitude axis, created by cdms.createAxis.
order is a string with value "yx" (the first grid
dimension is latitude) or "xy" (the first grid dimension
is longitude).
type is one of 'gaussian','uniform','equalarea',or
'generic'.
If specified, mask is a two−dimensional, logical
Numeric array (all values are zero or one) with the
same shape as the grid.

5/58

 RectGrid

createUniformGrid(startLat, nlat, deltaLat,
start−Lon, nlon, deltaLon, order="yx",
mask=None)
Create a uniform rectilinear grid. The grid is not
associated
with a file or dataset. The grid boundaries are at the
midpoints
of the axis values.

startLat is the starting latitude value.
nlat is the number of latitudes. If nlat is 1, the grid
latitude boundaries will be startLat +/− deltaLat/2.
deltaLat is the increment between latitudes.
startLon is the starting longitude value.
nlon is the number of longitudes. If nlon is 1, the grid
longitude boundaries will be startLon +/−deltaLon/2.
deltaLon is the increment between longitudes.
order is a string with value "y"x (the first grid
dimension is latitude) or "xy" (the first grid dimension
is longitude). .
If specified, mask is a two−dimensional, logical
Numeric array
(all values are zero or one) with the same shape as the
grid.

Axis createUniformLatitudeAxis(startLat, nlat, deltaLat)

Create a uniform latitude axis. The axis boundaries are
at the midpoints of the axis values. The axis is
designated as a circular latitude axis.

startLat is the starting latitude value.

nlat is the number of latitudes.

deltaLat is the increment between latitudes.

RectGrid createZonalGrid(grid)

Create a zonal grid. The output grid has the same
latitude as the input grid, and a single longitude. This
may be used to calculate zonal averages via a regridding
operation.
grid is a RectGrid.

Axis createUniformLongitudeAxis(startLon, nlon,
delta−Lon)
Create a uniform longitude axis. The axis boundaries are
at the midpoints of the axis values. The axis is
designated as a circular longitude axis.

startLon is the starting longitude value.

nlon is the number of longitudes.

6/58

deltaLon is the increment between longitudes.

Variable createVariable(array, typecode=None, copy=0,
savespace=0, mask=None, fill_value=None,
grid=None, axes=None, attributes=None, id=None)
This function is documented in Table 2.34 on page 90.

Integer getAutoBounds()

Get the current autobounds mode. Returns 0, 1, or 2. See
setAutoBounds.

Integer isVariable(s)

Return 1 if s is a variable, 0 otherwise. See also:
asVariable.

Dataset or
CdmsFile

open(url,mode='r') Open or create a Dataset or
CdmsFile. url is a Uniform Resource Locator, referring
to a cdunif or XML file. If the URL has the extension
'.xml' or '.cdml', a Dataset is returned, otherwise a
CdmsFile is returned. If the URL protocol is 'http', the
file must be a '.xml' or '.cdml' file, and the mode must
be 'r'. If the protocal is 'file' or is omitted, a local file or
dataset is open

mode is the open mode. See Table 2.24 on page 70.

Example: Open an existing dataset:

f = cdms.open("sampleset.xml")

Example: Create a netCDF file:

f = cdms.open("newfile.nc",'w')

List order2index (axes, orderstring)

Find the index permutation of axes to match order.
Return a list of indices

axes is a list of axis objects.

orderstring is defined as in orderparse.

7/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.24

 List orderparse(orderstring)
Parse an order string. Returns a list of axes specifiers.
orderstring consists of:

etters t, x, y, z meaning time, longitude,
latitude, level

•

Numbers 0−9 representing position in axes•
Dash (−) meaning insert the next available axis
here.

•

The ellipsis ... meaning fill these positions with
any remaining axes.

•

 (name) meaning an axis whose id is name•

 None

setAutoBounds(mode)
Set autobounds mode. In some circumstances CDMS
can generate boundaries for 1−D axes and rectilinear
grids, when the bounds are not explicitly defined. The
autoBounds mode determines how this is done:

If mode is 'grid' or 2 (the default), the getBounds
method will automatically generate boundary
information for an axis or grid if the axis is designated
as a latitude or longitude axis, and the boundaries are
not explicitly defined.
If mode is 'on' or 1, the getBounds method will
automatically generate boundary information for an
axis or grid, if the boundaries are not explicitly defined.
If mode is 'off' or 0, and no boundary data is explicitly
defined, the bounds will NOT be generated; the
getBounds method will return None for the boundaries.

Note: In versions of CDMS prior to V4.0, the default
mode was 'on'.

 None

setClassifyGrids(mode)
Set the grid classification mode. This affects how grid
type is determined, for the purpose of generating grid
boundaries.

If mode is 'on' (the default), grid type is determined by a
grid classification method, regardless of the value of
grid.get−Type().

If mode is 'off', the value of grid.getType() determines
the grid type

 None writeScripGrid(path, grid, gridTitle=None)
Write a grid to a SCRIP grid file.

path is a string, the path of the SCRIP file to be created.
grid is a CDMS grid object. It may be rectangular.
gridTitle is a string ID for the grid.

Table 2.3 Class Tags

8/58

Tag Class

'axis' Axis
'database' Database
'dataset' Dataset, CdmsFile
'grid' RectGrid
'variable' Variable
'xlink' Xlink

2.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At the application level, CdmsObj objects are
never created and used directly. Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) are the basis
of user application programming.

All objects derived from CdmsObj have a special attribute .attributes. This is a Python dictionary, which
contains all the external (persistent) attributes associated with the object. This is in contrast to the internal,
non−persistent attributes of an object, which are built−in and predefined. When a CDMS object is written to a
file, the external attributes are written, but not the internal attributes.

Example: get a list of all external attributes of obj.

extatts = obj.attributes.keys()

Table 2.4 Attributes common to all CDMS objects

Type Name Definition

Dictionary attributes External attribute dictionary for this object.'

Table 2.5 Getting and setting attributes

Type Definition

various value = obj.attname

Get an internal or external attribute
value. If the attribute is external, it is
read from the database. If the attribute is
not already in the database, it is created
as an external attribute. Internal
attributes cannot be created, only
referenced.
 obj.attname = value

Set an internal or external attribute

9/58

value. If the attribute is external, it is
written to the database.

2.5 CoordinateAxis

A CoordinateAxis is a variable that represents coordinate information. It may be contained in a file or dataset,
or may be transient (memoryresident). Setting a slice of a file CoordinateAxis writes to the file, and
referencing a file CoordinateAxis slice reads data from the file. Axis objects are also used to define the
domain of a Variable.

CDMS defines several different types of CoordinateAxis objects. Table 2.9 on page 45 documents methods
that are common to all CoordinateAxis types. Table 2.10 on page 48 specifies methods that are unique to 1D
Axis objects.

Table 2.6 CoordinateAxis types

Type
Definition

 CoordinateAxis A variable that represents coordinate information. Has subtypes
Axis2D and AuxAxis1D.

 Axis A one−dimensional coordinate axis whose values are strictly
monotonic. Has subtypes DatasetAxis, FileAxis, and TransientAxis.
May be an index axis, mapping a range of integers to
the equivalent floating point value. If a latitude or longitude
axis, may be associated with a RectGrid.

Axis2D A two−dimensional coordinate axis, typically a latitude or longitude
axis related to a CurvilinearGrid. Has subtypes
DatasetAxis2D, FileAxis2D, and TransientAxis2D.

AuxAxis1D A one−dimensional coordinate axis whose values need
not be monotonic. Typically a latitude or longitude axis
associated with a GenericGrid. Has subtypes
DatasetAuxAxis1D, FileAuxAxis1D, and
TransientAuxAxis1D.

An axis in a CdmsFile may be designated the unlimited axis, meaning that it can be extended in length after
the initial definition. There can be at most one unlimited axis associated with a CdmsFile.

Table 2.7 CoordinateAxis Internal Attributes

Type Name Definition
Dictionary attributes External attribute dictionary.
String id CoordinateAxis identifer.

Dataset parent The dataset which contains the
variable.

Tuple shape The length of each axis.

Table 2.8 Axis Constructors

10/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.9
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.10

cdms.createAxis(data, bounds=None)
Create an axis which is not associated with a dataset or file. See Table 2.2 on page 33.

Dataset.createAxis(name,ar)
Create an Axis in a Dataset. (This function is not yet implemented.)

CdmsFile.createAxis(name,ar,unlimited=0)
Create an Axis in a CdmsFile.
name is the string name of the Axis.
ar is a 1−D data array which defines the Axis values. It may have the value
None if an unlimited axis is being defined.

At most one Axis in a CdmsFile may be designated as being unlimited, meaning that it
may be extended in length. To define an axis as unlimited, either:

set ar to None, and leave unlimited undefined, or•
set ar to the initial 1−D array, and set unlimited to cdms.Unlimited•

cdms.createEqualAreaAxis(nlat)
See Table 2.2 on page 33.

cdms.createGaussianAxis(nlat)
See Table 2.2 on page 18.

cdms.createUniformLatitudeAxis(startlat, nlat, deltalat)
See Table 2.2 on page 18.

cdms.createUniformLongitudeAxis(startlon, nlon, deltalon)
See Table 2.2 on page 18.

Table 2.9 CoordinateAxis Methods

Type Method Definition

Array array = axis[i:j]

Read a slice of data from the external file or dataset. Data
is returned in the physical ordering defined in the dataset.
See Table 2.11 on page 51 for a description of slice
operators.

11/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.11

None axis[i:j] = array

Write a slice of data to the external file. Dataset axes are
read−only.

None
assignValue(array)

Set the entire value of the axis.

array is a Numeric array, of the same dimensionality as
the axis.

Axis clone(copyData=1)

Return a copy of the axis, as a transient axis. If copyData
is 1 (the default) the data itself is copied.

None designateLatitude(persistent=0):

Designate the axis to be a latitude axis.

If persistent is true, the external file or dataset (if any) is
modified. By default, the designation is temporary.

None designateLevel(persistent=0)

Designate the axis to be a vertical level axis.

If persistent is true, the external file or dataset (if any) is
modified. By default, the designation is temporary.

 None designateLongitude(persistent=0, modulo=360.0)
Designate the axis to be a longitude axis.
modulo is the modulus value. Any given axis value x is
treated as equivalent to x+modulus
If persistent is true, the external file or dataset (if any) is
modified. By default, the designation is temporary.

 None designateTime(persistent=0, calendar =
cdtime.MixedCalendar)
Designate the axis to be a time axis.
If persistent is true, the external file or dataset (if any) is
modified. By default, the designation is temporary.
calendar is defined as in getCalendar().

 Array getBounds()
Get the associated boundary array.

The shape of the return array depends on the type of axis:

Axis: (n,2)•
Axis2D: (i,j,4)•

12/58

 AuxAxis1D: (ncell, nvert) where nvert is the
maximum number of vertices of a cell.

•

If the boundary array of a latitude or longitude Axis is not
explicitly defined, and autoBounds mode is on, a default
array is generated by calling genGenericBounds.
Otherwise if auto−Bounds mode is off, the return value is
None. See setAutoBounds.

 Integer

getCalendar()
Returns the calendar associated with the (time) axis.
Possible return values, as defined in the cdtime module,
are:

cdtime.GregorianCalendar: the standard
Gregorian calendar

•

cdtime.MixedCalendar: mixed Julian/Gregorian
calendar

•

cdtime.JulianCalendar: years divisible by 4 are
leap years

•

cdtime.NoLeapCalendar: a year is 365 days•
cdtime.Calendar360: a year is 360 days•
None: no calendar can be identified•

Note: If the axis is not a time axis, the global, file−related
calendar is returned.

 Array getValue()
Get the entire axis vector.

 Integer isLatitude()
Returns true iff the axis is a latitude axis.

 Integer isLevel()Returns true iff the axis is a level axis.

 Integer isLongitude()
Returns true iff the axis is a longitude axis.

 Integer isTime()Returns true iff the axis is a time axis.

Integer len(axis)

13/58

The length of the axis if one−dimensional. If
multidimensional, the length of the first dimension.

Integer
size()

The number of elements in the axis.

String typecode()

The Numeric datatype identifier.

Table 2.10 Axis Methods, additional to CoordinateAxis methods

 Type Method Definition

List of
component times

asComponentTime(calendar=None)

Array version of cdtime tocomp. Returns a list of component times.

List of relative
times

asRelativeTime()

Array version of cdtime torel. Returns a list of relative times.

None designateCircular(modulo, persistent=0)
Designate the axis to be circular.

modulo is the modulus value. Any given axis value x is treated as equivalent to x+modulus
If persistent is true, the external file or dataset (if any) is modified. By default, the
designation is temporary.

Integer isCircular()
Returns true if the axis has circular topology. An axis is defined as circular if:

axis.topology=='circular', or•
axis.topology is undefined, and the axis is a longitude The default cycle for circular
axes is 360.0

•

Integer isLinear()
Returns true if the axis has a linear representation.

Tuple mapInterval(interval)
Same as mapIntervalExt, but returns only the tuple (i,j), and wraparound is restricted to
one cycle.

(i,j,k) mapIntervalExt(interval)
Map a coordinate interval to an index interval.

interval is a tuple having one of the forms:

(x,y)
(x,y,indicator)
(x,y,indicator,cycle)

14/58

None or ':'

where x and y are coordinates indicating the interval [x,y), and:

indicator is a two or three−character string, where the first character is 'c' if the interval is
closed on the left, 'o' if open, and the second character has the same meaning for the
right−hand point. If present, the third character specifies how the interval should be
intersected with the axis:

' n' − select node values which are contained in the interval•
'b' −select axis elements for which the corresponding cell boundary intersects the
interval

•

'e' − same as n, but include an extra node on either side•
 's' − select axis elements for which the cell boundary is a subset of the interval•

The default indicator is 'ccn', that is, the interval is closed, and nodes in the interval are
selected.

If cycle is specified, the axis is treated as circular with the given cycle value. By default, if
axis.isCircular() is true, the axis is treated as circular with a default modulus of 360.0.

An interval of None or ':' returns the full index interval of the axis.

The method returns the corresponding index interval as a 3tuple (i,j,k), where k is the
integer stride, and [i.j) is the half−open index interval i<=k<j (i>=k>j if k<0), or None if
the intersection is empty.

For an axis which is circular (axis.topology == 'circular'), [i,j) is interpreted as follows,
where N=len(axis)

if 0<=i<N and 0<=j<=N, the interval does not wrap around the axis endpoint.•
otherwise the interval wraps around the axis endpoint.•

See also: mapInterval, Variable.subRegion()

TransientAxis subAxis(i,j,k=1)

Create an axis associated with the integer range [i:j:k]. The stride k can be positive or
negative. Wraparound is supported for longitude dimensions or those with a modulus
attribute.

Table 2.11 Axis Slice Operators

 Slice Definition

[i] The ith element, starting with index 0

[i:j] The ith element through, but not including, element j

[i:] The ith element through and including the end

[:j] The beginning element through, but not including, element j

15/58

[:] The entire array

[i:j:k] Every kth element, starting at i, through but not including j

[−i] The ith element from the end. −1 is the last element.

Example: A longitude axis has value [0.0, 2.0, ..., 358.0], of length 180. Map the coordinate interval −5.0 <=
x < 5.0 to index interval(s), with wraparound. The result index interval −2<=n<3 wraps around, since −2<0,
and has a stride of 1. This is equivalent to the two contiguous index intervals 2<=n<0 and 0<=n<3

> axis.isCircular()
1
> axis.mapIntervalExt((−5.0,5.0,'co'))
(−2,3,1)
>

2.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface. netCDF files are accessible in read−write
mode. All other formats (DRS, HDF, GrADS/GRIB, POP, QL) are accessible read−only.

As of CDMS V3, the legacy cuDataset interface is also supported by Cdms−Files. See "cu Module" on page
180.

Table 2.12 CdmsFile Internal Attributes

Type Name Definition

Dictionary attributes Global, external file attributes

Dictionary axes Axis objects contained in the
file.

Dictionary grids Grids contained in the file.
String id File pathname.
Dictionary variables Variables contained in the file.

Table 2.13 CdmsFile Constructors

fileobj = cdms.open(path, mode)

Open the file specified by path returning a CdmsFile object.
path is the file pathname, a string.
mode is the open mode indicator, as listed in Table 2.24 on page 70.

fileobj = cdms.createDataset(path)

Create the file specified by path, a string.

Table 2.14 CdmsFile Methods

16/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.24

Type Definition

Transient−
 Variable

fileobj(varname, selector)
Calling a CdmsFile object as a function reads the region
of data specified by the selector. The result is a transient
variable, unless raw=1 is specified. See "Selectors" on
page 103.

For example, the following reads data for variable 'prc',
year 1980:

f = cdms.open('test.nc')
x = f('prc', time=('1980−1','1981−1'))

Variable,
Axis, or
Grid

fileobj['id']

Get the persistent variable, axis or grid object having the
string identifier. This does not read the data for a
variable.

For example:

f = cdms.open('sample.nc')

v = f['prc']

gets the persistent variable v, equivalent
to v=f.variables['prc'].
t = f['time']

gets the axis named time, equivalent to t=f.axes['time'].

None close()

Close the file.

Axis copyAxis(axis, newname=None)

Copy axis values and attributes to a new axis in the file.
The returned object is persistent: it can be used to write
axis data to or read axis data from the file. If an axis
already exists in the file, having the same name and
coordinate values, it is returned. It is an error if an axis
of the same name exists, but with different coordinate
values.

axis is the axis object to be copied.

newname, if specified, is the string identifier of the new
axis object. If not specified, the identifier of the input
axis is used.

17/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#2.11.1_Selectors

Grid copyGrid(grid, newname=None)

Copy grid values and attributes to a new grid in the file.
The returned grid is persistent. If a grid already exists in
the file, having the same name and axes, it is returned.
An error is raised if a grid of the same name exists,
having different axes.

grid is the grid object to be copied.

newname, if specified is the string identifier of the new
grid object. If unspecified, the identifier of the input grid
is used.

Axis createAxis(id, ar, unlimited=0)

Create a new Axis. This is a persistent object which can
be used to read or write axis data to the file.
id is an alphanumeric string identifier, containing no
blanks.

ar is the one−dimensional axis array.

Set unlimited to cdms.Unlimited to indicate that the axis
is extensible.

RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)
Create a RectGrid in the file. This is not a persistent
object: the order, type, and mask are not written to the
file. However, the grid may be used for regridding
operations.

lat is a latitude axis in the file.

lon is a longitude axis in the file.

order is a string with value "yx" (the first grid
dimension is latitude) or "xy" (the first grid dimension
is longitude).

type is one of 'gaussian','uniform','equalarea',or 'generic'

If specified, mask is a two−dimensional, logical
Numeric array (all values are zero or one) with the same
shape as the grid.

Variable createVariable(String id, String datatype,List axes,
fill_value=None)
Create a new Variable. This is a persistent object which
can be used to read or write variable data to the file.
id is a String name which is unique with respect to all
other objects in the file.

datatype is an MA typecode, e.g., MA.Float, MA.Int.

axes is a list of Axis and/or Grid objects.

fill_value is the missing value (optional).

18/58

Variable createVariableCopy(var, newname=None)

Create a new Variable, with the same name, axes, and
attributes as the input variable. An error is raised if a
variable of the same name exists in the file.

var is the Variable to be copied.

newname, if specified is the name of the new variable.
If unspecified, the returned variable has the same name
as var.

Note: Unlike copyAxis, the actual data is not copied to
the new variable.

CurveGrid or
Generic−Grid

readScripGrid(self, whichGrid='destination',
check−Grid=1)

Read a curvilinear or generic grid from a SCRIP
netCDF file. The file can be a SCRIP grid file or
remapping file.

If a mapping file, whichGrid chooses the grid to read,
either "source" or "destination".

If checkGrid is 1 (default), the grid cells are checked
for convexity, and 'repaired' if necessary. Grid cells
may appear to be nonconvex if they cross a 0 / 2pi
boundary. The repair consists of shifting the cell
vertices to the same side modulo 360 degrees.

one sync()

Writes any pending changes to the file.

19/58

 Variable

write(var, attributes=None, axes=None,
extbounds=None, id=None, extend=None,
fill_value=None, index=None, typecode=None)

Write a variable or array to the file. The return value is
the associated file variable.

If the variable does not exist in the file, it is first
defined and all attributes written, then the data is
written. By default, the time dimension of the variable
is defined as the unlimited dimension of the file. If the
data is already defined, then data is
extended or overwritten depending on the value of
keywords extend and index, and the unlimited
dimension values associated with var.

var is a Variable, masked array, or Numeric array.

attributes is the attribute dictionary for the variable.
The default is var.attributes.

axes is the list of file axes comprising the domain of
the variable. The default is to copy var.getAxisList().

extbounds is the unlimited dimension bounds. Defaults
to var.getAxis(0).getBounds()

id is the variable name in the file. Default is var.id.

extend=1 causes the first dimension to be unlimited:
iteratively writeable. The default is None, in which
case the first dimension is extensible if it is time.Set to
0 to turn off this behaviour.

fill_value is the missing value flag.

index is the extended dimension index to write to. The
default index is determined by lookup relative to the
existing extended dimension.

Note: data can also be written by setting a slice of a file
variable, and attributes can be written by setting an
attribute of a file variable.

Table 2.15 CDMS Datatypes

CDMS Datatype Definition

20/58

CdChar character
CdDouble double−precision floating−point
CdFloat floating−point
CdInt integer
CdLong long integer
CdShort short integer
2.7 Database

A Database is a collection of datasets and other CDMS objects. It consists of a hierarchical collection of
objects, with the database being at the root, or top of the hierarchy. A database is used to:

search for metadata•
access data •
provide authentication and access control for data and metadata•

The figure below illustrates several important points:

Each object in the database has a relative name of the form tag=id. The id of an object is unique with
respect to all objects contained in the parent.

•

The name of the object consists of its relative name followed by the relative name(s) of its antecedent
objects, up to and including the database name. In the figure below, one of the variables has name

•

"variable=ua, dataset=ncep_reanalysis_mo,database=CDMS".

Subordinate objects are thought of as being contained in the parent. In this example, the database
'CDMS' contains two datasets, each of which contain several variables.

•

2.7.1 Overview

To access a database:

1. Open a connection. The connect method opens a database connection. connect takes a database URI and
returns a database object:

db = cdms.connect("ldap://dbhost.llnl.gov/
database=CDMS,ou=PCMDI,o=LLNL,c=US")

2. Search the database, locating one or more datasets, variables, and/or other objects.

21/58

The database searchFilter method searches the database. A single database connection may be used for an
arbitrary number of searches.

For example, to find all observed datasets:

result = db.searchFilter(category="observed",tag="dataset")

Searches can be restricted to a subhierarchy of the database. This example searches just the dataset
'ncep_reanalysis_mo':

result = db.searchFilter(relbase="dataset=ncep_reanalysis")

3. Refine the search results if necessary. The result of a search can be narrowed with the searchPredicate
method.

4. Process the results. A search result consists of a sequence of entries. Each entry has a name, the name of the
CDMS object, and an attribute dictionary, consisting of the attributes located by the search:

for entry in result:
print entry.name, entry.attributes

5. Access the data. The CDMS object associated with an entry is obtained from the getObject method:

obj = entry.getObject()

If the id of a dataset is known, the dataset can be opened directly with the open method:

dset = db.open("ncep_reanalysis_mo")

6. Close the database connection:

db.close()

Table 2.16 Database Internal Attributes

Type Name Summary

Dictionary attributes Database attribute dictionary

LDAP db (LDAP only) LDAP database
object

String netloc Hostname, for server−based
databases

String path path name

String uri Uniform Resource Identifier.

Table 2.17 Database Constructors

22/58

db = cdms.connect(uri=None, user="", password="")

Connect to the database.

uri is the Universal Resource Indentifier of the database. The form of the URI depends on
the implementation of the database. For a Lightweight Directory Access Protocol
(LDAP) database, the form is:

ldap://host[:port]/dbname

For example, if the database is located on host dbhost.llnl.gov, and is named
'database=CDMS,ou=PCMDI,o=LLNL,c=US', the URI is:

ldap://dbhost.llnl.gov/database=CDMS,ou=PCMDI,o=LLNL,c=US

If unspecified, the URI defaults to the value of environment variable CDMSROOT.

user is the user ID. If unspecified, an anonymous connection is made.

password is the user password. A password is not required for an anonymous connection.

Table 2.18 Database Methods

Type Definition

None close()
 Close a database connection.

List listDatasets()
 Return a list of the dataset IDs in this database. A dataset ID can be passed to

the open command.

Dataset open(dsetid, mode='r')

Open a dataset.

dsetid is the string dataset identifier

mode is the open mode, 'r' − read−only, 'r+' −
read−write, 'w' − create.

23/58

openDataset is a synonym for open.

 SearchResult

searchFilter(filter=None, tag=None, relbase=None,
scope=Subtree, attnames=None, timeout=None)
Search a CDMS database.

filter is the string search filter. Simple filters have the
form "tag = value". Simple filters can be combined using
logical operators '&', '|', '!' in prefix notation. For
example, the filter '(&(objectclass=variable)(id=cli))'
finds all variables named "cli". A formal definition of
search filters is provided in the following section.

tag restricts the search to objects with that tag ("dataset"
| "variable" | "database" | "axis" | "grid").

relbase is the relative name of the base object of the
search. The search is restricted to the base object and all
objects below it in the hierarchy. For example, to search
only dataset 'ncep_reanalysis_mo', specify:
relbase="dataset=ncep_reanalysis_mo".

To search only variable 'ua' in 'ncep_reanalysis_mo', use:
relbase="variable=ua,
dataset=ncep_reanalysis_mo"

If no base is specified, the entire database is searched.
See the scope argument also.

scope is the search scope (Subtree | Onelevel | Base).
Subtree searches the base object and its descendants.
Onelevel searches the base object and its immediate
descendants. Base searches the base object alone. The
default is Subtree.

attnames: list of attribute names. Restricts the attributes
returned. If None, all attributes are returned. Attributes
'id' and 'objectclass' are always included in the list.

timeout: integer number of seconds before timeout. The
default is no timeout.

2.7.2 Searching a database

The searchFilter method is used to search a database. The result is called a search result, and consists of a
sequence of result entries.

24/58

In its simplest form, searchFilter takes an argument consisting of a string filter. The search returns a
sequence of entries, corresponding to those objects having an attribute which matches the filter. Simple filters
have the form (tag = value), where value can contain wildcards. For example:

'(id = ncep*)'
'(project = AMIP2)'

Simple filters can be combined with the logical operators '&', '|', '!'. For example,

'(&(id = bmrc*)(project = AMIP2))'

matches all objects with id starting with bmrc, and a project attribute with value 'AMIP2'.

Formally, search filters are strings defined as follows:

filter ::= "(" filtercomp ")"

filtercomp ::= "&" filterlist | # and
"|" filterlist | # or
"!" filterlist | # not
simple

filterlist ::= filter | filter filterlist
simple ::= tag op value
op ::= "=" | # equality

"~=" | # approximate equality
"<=" | # lexicographically less than or equal to
">=" # lexicographically greater than or equal to

tag ::= string attribute name
value ::= string attribute value, may include '*' as a wild card

Attribute names are defined in the chapter on "Climate Data Markup Language (CDML)" on page 149. In
addition, some special attributes are defined for convenience:

category is either "experimental" or "observed"•
parentid is the ID of the parent dataset•
project is a project identifier, e.g., "AMIP2"•
 objectclass is the list of tags associated with the object.•

The set of objects searched is called the search scope. The top object in the hierarchy is the base object. By
default, all objects in the database are searched, that is, the database is the base object. If the database is very
large, this may result in an unnecessarily slow or inefficient search. To remedy this the search scope can be
limited in several ways:

The base object can be changed.•
The scope can be limited to the base object and one level below, or to just the base object.•
The search can be restricted to objects of a given class (dataset, variable, etc.)•
The search can be restricted to return only a subset of the object attributes •
The search can be restricted to the result of a previous search.•

25/58

A search result is accessed sequentially within a for loop:

result = db.searchFilter('(&(category=obs*)(id=ncep*))')
for entry in result:
print entry.name

Search results can be narrowed using searchPredicate. In the following example, the result of one search is
itself searched for all variables defined on a 94x192 grid:

>>> result = db.searchFilter('parentid=ncep*',tag="variable")
>>> len(result)
65
>>> result2 = result.searchPredicate(lambda x:

x.getGrid().shape==(94,192))
>>> len(result2)
3
>>> for entry in result2: print entry.name
variable=rluscs,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US

variable=rlds,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,
o=LLNL, c=US

variable=rlus,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,
o=LLNL, c=US

>>>

Table 2.19 SearchResult Methods

 Type Definition

ResultEntry [i]
Return the i−th search result. Results can also be returned in a for loop:
for entry in db.searchResult(tag="dataset"):

Integer len()
Number of entries in the result.

26/58

SearchResult searchPredicate(predicate, tag=None)
Refine a search result, with a predicate search.

predicate is a function which takes a single CDMS object and returns true (1) if the object satisfies the
predicate, 0 if not.
tag restricts the search to objects of the class denoted by the tag.

Note: In the current implementation, searchPredicate is much less efficient than searchFilter. For best
performance, use
searchFilter to narrow the scope of the search, then use
searchPredicate for more general searches.

A search result is a sequence of result entries. Each entry has a string name, the name of the object in the
database hierarchy, and an attribute dictionary. An entry corresponds to an object found by the search, but
differs from the object, in that only the attributes requested are associated with the entry. In general, there will
be much more information defined for the associated CDMS object, which is retrieved with the getObject
method.

Table 2.20 ResultEntry Attributes

Type Name Summary

String name The name of this entry in the database.

Dictionary attributes The attributes returned from the search.

attributes[key] is a list of all string values
associated with the key.

Table 2.21 ResultEntry Methods

Type Definition

CdmsObj getObject()

Return the CDMS object associated with this entry.

Note: For many search applications it is unnecessary to access the
associated CDMS object. For best performance this function should be
used only when necessary, for example, to retrieve data associated with a
variable.

2.7.3 Accessing data

To access data via CDMS:

Locate the dataset ID. This may involve searching the metadata.1.
Open the dataset, using the open method.2.
Reference the portion of the variable to be read.3.

In the next example, a portion of variable 'ua' is read from dataset 'ncep_reanalysis_mo':

27/58

dset = db.open('ncep_reanalysis_mo')
ua = dset.variables['ua']
data = ua[0,0]

2.7.4 Examples of database searches

In the following examples, db is the database opened with

db = cdms.connect()

This defaults to the database defined in environment variable CDMSROOT.

List all variables in dataset 'ncep_reanalysis_mo':

for entry in db.searchFilter(filter="parentid=ncep_reanalysis_mo",
tag="variable"):
print entry.name

Find all axes with bounds defined:

for entry in db.searchFilter(filter="bounds=*",tag="axis"):
print entry.name

Locate all GDT datasets:

for entry in
db.searchFilter(filter="Conventions=GDT*",tag="dataset"):
print entry.name

Find all variables with missing time values, in observed datasets:

def missingTime(obj):
time = obj.getTime()
return time.length != time.partition_lengt

result = db.searchFilter(filter="category=observed")
for entry in result.searchPredicate(missingTime):
 print entry.name

Find all CMIP2 datasets having a variable with id "hfss":

for entry in
db.searchFilter(filter="(&(project=CMIP2)(id=hfss))",tag="var
iable"):

print entry.getObject().parent.id

Find all observed variables on 73x144 grids:

result = db.searchFilter(category='obs*')

28/58

for entry in result.searchPredicate(lambda x:
 x.getGrid().shape==(73,144),tag="variable"):
print entry.name

Find all observed variables with more than 1000 timepoints:

result = db.searchFilter(category='obs*')
for entry in result.searchPredicate(lambda x: len(x.getTime())>1000,
 tag="variable"):
print entry.name, len(entry.getObject().getTime())

Find the total number of each type of object in the database

print len(db.searchFilter(tag="database")),"database"
print len(db.searchFilter(tag="dataset")),"datasets"
print len(db.searchFilter(tag="variable")),"variables"
print len(db.searchFilter(tag="axis")),"axes"

2.8 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML representation, and one or more data files.

As of CDMS V3, the legacy cuDataset interface is supported by Datasets. See "cu Module" on page 180.

Table 2.22 Dataset Internal Attributes

Type Name Summary

Dictionary attributes Dataset external attributes.

Dictionary axes Axes contained in the dataset.

 String datapath
 Path of data files, relative to the parent
database. If no parent, the datapath is
absolute.

Dictionary grids Grids contained in the dataset.
String mode Open mode.

Database parent Database which contains this dataset. If
the
dataset is not part of a database, the
value is
None.

String uri Uniform Resource Identifier of this
dataset.

Dictionary variables Variables contained in the dataset.
Dictionary xlinks External links contained in the dataset.

Table 2.23 Dataset Constructors

29/58

datasetobj = cdms.open(String uri, String mode='r')

Open the dataset specified by the Universal Resource Indicator, a CDML file. Returns a
Dataset object. mode is one of the indicators listed in Table 2.24 on page 70.

openDataset is a synonym for open.

Table 2.24 Open Modes

Mode Definition

'r' read−only

'r+' read−write
'a' read−write. Open the file if it exists, otherwise create a

new file
'w' Create a new file, read−write

Table 2.25 Dataset Methods

Type Definition

Transient−
Variable

datasetobj(varname, selector)
Calling a Dataset object as a function reads the region
of data defined by the selector. The result is a transient
variable, unless raw=1 is specified. See "Selectors" on
page 103.

For example, the following reads data for variable 'prc',
year 1980:

f = cdms.open('test.xml')
x = f('prc', time=('1980−1','1981−1'))

Variable,
Axis, or Grid

datasetobj['id']
The square bracket operator applied to a dataset gets the
persistent variable, axis or grid object having the string
identifier. This does not read the data for a variable.
Returns None if not found.
For example:

f = cdms.open('sample.xml')
 v = f['prc']
gets the persistent variable v, equivalent to
v=f.variables['prc'].

t = f['time']
gets the axis named 'time', equivalent to
t=f.axes['time']

30/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.24
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#2.11.1_Selectors

 None close()
Close the dataset.

RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)
Create a RectGrid in the dataset. This is not a persistent
object: the order, type, and mask are not written to the
dataset. However, the grid may be used for regridding
operations.

lat is a latitude axis in the dataset.

lon is a longitude axis in the dataset.

order is a string with value "yx" (the first grid
dimension is latitude) or "xy" (the first grid dimension
is longitude).
type is one of 'gaussian','uniform','equalarea',or 'generic'

If specified, mask is a two−dimensional, logical
Numeric array (all values are zero or one) with the
same shape as the grid.

Axis getAxis(id)

Get an axis object from the file or dataset.

id is the string axis identifier.

Grid getGrid(id)

Get a grid object from a file or dataset.

id is the string grid identifier.

List getPaths()

Get a sorted list of pathnames of datafiles which
comprise the dataset. This does not include the XML
metafile path, which is stored in the .uri attribute.

Variable getVariable(id)

Get a variable object from a file or dataset.

id is the string variable identifier.
CurveGrid
or

readScripGrid(self, whichGrid='destination', check−or
Generic−Grid=1)

31/58

GenericGrid Read a curvilinear or generic grid from a SCRIP
dataset. The dataset can be a SCRIP grid file or
remapping file.

If a mapping file, whichGrid chooses the grid to read,
either "source" or "destination".

If checkGrid is 1 (default), the grid cells are checked for
convexity, and 'repaired' if necessary. Grid cells may
appear to be nonconvex if they cross a 0 / 2pi boundary.
The repair consists of shifting the cell vertices to the
same side modulo 360 degrees.

 None sync()
Write any pending changes to the dataset.

2.9 MV module

The fundamental CDMS data object is the variable. A variable is comprised of:

a masked data array, as defined in the NumPy MA module.•
a domain: an ordered list of axes and/or grids.•
an attribute dictionary.•

The MV module is a work−alike replacement for the MA module, that carries along the domain and attribute
information where appropriate. MV provides the same set of functions as MA. However, MV functions
generate transient variables as results. Often this simplifies scripts that perform computation. MA is part of the
Python Numeric package, documented at http:// numpy.sourceforge.net.

MV can be imported with the command:

import MV

The command

from MV import *

allows use of MV commands without any prefix.

Table 2.26 on page 75 lists the constructors in MV. All functions return a transient variable. In most cases the
keywords axes, attributes, and id are available. axes is a list of axis objects which specifies the domain of the
variable. attributes is a dictionary. id is a special attribute string that serves as the identifier of the variable,
and should not contain blanks or non−printing characters. It is used when the variable is plotted or written to a
file. Since the id is just an attribute, it can also be set like any attribute:

var.id = 'temperature'

For completeness MV provides access to all the MA functions. The functions not listed in the following tables
are identical to the corresponding MA function: allclose, allequal, common_fill_value, compress,
create_mask, dot, e, fill_value, filled, get_print_limit, getmask, getmaskarray, identity, indices,
innerproduct, isMA, isMaskedArray, is_mask, isarray, make_mask, make_mask_none, mask_or,
masked, pi, put, putmask, rank, ravel, set_fill_value, set_print_limit, shape, size. See the documentation

32/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.26

at http://numpy.sourceforge.net for a description of these functions.

Table 2.26 Variable Constructors in module MV

arrayrange(start, stop=None, step=1, typecode=None, axis=None, attributes=None,
id=None)

Just like MA.arange() except it returns a variable whose type can be specfied by the
keyword argument typecode. The axis, attribute dictionary, and string identifier of the
result variable may be specified.

Synonym: arange

masked_array(a, mask=None, fill_value=None, axes=None, attributes=None,
id=None)

Same as MA.masked_array but creates a variable instead. If no axes are specified, the
result has default axes, otherwise axes is a list of axis objects matching a.shape.

masked_object(data, value, copy=1, savespace=0, axes=None, attributes=None,
id=None)

Create variable masked where exactly data equal to value. Create the variable with the
given list of axis objects, attribute dictionary, and string id.

masked_values(data, value, rtol=1e−05, atol=1e−08, copy=1, savespace=0,
axes=None, attributes=None, id=None)

Constructs a variable with the given list of axes and attribute dictionary, whose mask is set
at those places where

abs (data − value) < atol + rtol * abs (data).

This is a careful way of saying that those elements of the data that have value = value (to
within a tolerance) are to be treated as invalid. If data is not of a floating point type, calls
masked_object instead.

ones(shape, typecode='l', savespace=0, axes=None, attributes=None, id=None)
Return an array of all ones of the given length or shape.

reshape(a, newshape, axes=None, attributes=None, id=None)
Copy of a with a new shape.

resize(a, new_shape, axes=None, attributes=None, id=None)
Return a new array with the specified shape. The original arrays total size can be any size.

zeros(shape, typecode='l', savespace=0, axes=None, attributes=None, id=None)
An array of all zeros of the given length or shape.

33/58

The following table describes the MV non−constructor functions. With the exception of argsort, all functions
return a transient variable.

Table 2.27 MV functions

argsort(x, axis=−1, fill_value=None)
Return a Numeric array of indices for sorting along a given axis.

asarray(data, typecode=None)
Same as cdms.createVariable(data, typecode, copy=0). This is a short way of
ensuring that something is an instance of a variable of a given type before proceeding,
as in
data = asarray(data)

Also see the variable astype() function.

average(a, axis=0, weights=None)
computes the average value of the non−masked elements of x along the selected
axis. If weights is given, it must match the size and shape of x, and the
value returned is:
sum(a*weights)/sum(weights)

In computing these sums, elements that correspond to those that are masked in
x or weights are ignored.

choose(condition, t)
has a result shaped like array condition. t must be a tuple of two arrays t1 and
t2. Each element of the result is the corresponding element of t1 where condition
is true, and the corresponding element of t2 where condition is false. The
result is masked where condition is masked or where the selected element is
masked.

concatenate(arrays, axis=0, axisid=None, axisattributes=None)
Concatenate the arrays along the given axis. Give the extended axis the id and
attributes provided − by default, those of the first array.

count(a, axis=None)
Count of the non−masked elements in a, or along a certain axis.

isMaskedVariable(x)
Return true if x is an instance of a variable.

masked_equal(x, value)
x masked where x equals the scalar value For floating point value consider
masked_values(x, value) instead.

masked_greater(x, value)
x masked where x > value

masked_greater_equal(x, value)
x masked where x >= value

masked_less(x, value)
x masked where x < value

masked_less_equal(x, value)
x masked where x <= value

masked_not_equal(x, value)
x masked where x != value

34/58

masked_outside(x, v1, v2)
x with mask of all values of x that are outside [v1,v2]

masked_where(condition, x, copy=1)
Return x as a variable masked where condition is true. Also masked where x
or condition masked. condition is a masked array having the same shape as x.

maximum(a, b=None)
Compute the maximum valid values of x if y is None; with two arguments,
return the element−wise larger of valid values, and mask the result where either
x or y is masked.

minimum(a, b=None)
Compute the minimum valid values of x if y is None; with two arguments,
return the element−wise smaller of valid values, and mask the result where
either x or y is masked.

outerproduct(a, b)
Return a variable such that result[i, j] = a[i] * b[j]. The result will be masked
where a[i] or b[j] is masked.

power(a, b)
a**b

product(a, axis=0, fill_value=1)
Product of elements along axis using fill_value for missing elements.

repeat(ar, repeats, axis=0)
Return ar repeated repeats times along axis. repeats is a sequence of length
ar.shape[axis] telling how many times to repeat each element.

set_default_fill_value(value_type, value)
Set the default fill value for value_type to value. value_type is a string:
'real','complex','character','integer',or 'object'. value should be a
scalar or single−element array.

sort(ar, axis=−1)
Sort array ar elementwise along the specified axis. The corresponding axis in
the result has dummy values.

sum(a, axis=0, fill_value=0)
Sum of elements along a certain axis using fill_value for missing.

take(a, indices, axis=0)
Return a selection of items from a. See the documentation in the Numeric
manual.

transpose(ar, axes=None)
Perform a reordering of the axes of array ar depending on the tuple of indices
axes;thedefault is to reverse the order of the axes.

where(condition, x, y)
x where condition is true, y otherwise.

2.10 HorizontalGrid

A HorizontalGrid represents a latitude−longitude coordinate system. In addition, it optionally describes how

35/58

lat−lon space is partitioned into cells. Specifically, a HorizontalGrid:

consists of a latitude and longitude coordinate axis.•
may have associated boundary arrays describing the grid cell boundaries,•
may optionally have an associated logical mask.•

CDMS supports several types of HorizontalGrids:

Table 2.28

GridType Definition

RectGrid Associated latitude an longitude are 1−D axes, with strictly
monotonic values.

CurveGrid Latitude and longitude are 2−D coordinate axes (Axis2D).

GenericGrid Latitude and longitude are 1−D auxiliary coordinate axis
(AuxAxis1D)

Table 2.29 HorizontalGrid Internal Attribute

Type Name Definition
Dictionary attributes External attribute dictionary.
String id The grid identifier.
Dataset or parent The dataset or file which contains the grid.
CdmsFile

Tuple shape The shape of the grid, a 2−tuple.
Table 2.31 on page 82 describes the methods that apply to all types of HorizontalGrids. Table 2.32 on page 86
describes the additional methods that are unique to RectGrids.

Table 2.30 RectGrid Constructors

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

Create a grid not associated with a file or dataset. See Table 2.2 on page 33.

CdmsFile.createRectGrid(id, lat, lon, order, type="generic", mask=None)

Create a grid associated with a file. See Table 2.14 on page 53.

Dataset.createRectGrid(id, lat, lon, order, type="generic", mask=None)

Create a grid associated with a dataset. See Table 2.25 on page 71.

cdms.createGaussianGrid(nlats, xorigin=0.0, order="yx")

See Table 2.2 on page 33.

cdms.createGenericGrid(latArray, lonArray, latBounds=None, lonBounds=None,
order="yx", mask=None)

See Table 2.2 on page 18.

36/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.31
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.32
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.14
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.25
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2

cdms.createGlobalMeanGrid(grid)

See Table 2.2 on page 18.

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

See Table 2.2 on page 18.

cdms.createUniformGrid(startLat, nlat, deltaLat, startLon, nlon, deltaLon,
order="yx", mask=None)

See Table 2.2 on page 18.

cdms.createZonalGrid(grid)

See Table 2.2 on page 18.

Table 2.31 HorizontalGrid Methods

Type Definition

Horizontal−Grid clone()
Return a transient copy of the grid.

Axis getAxis(Integer n)
Get the n−th axis.
n is either 0 or 1.

Tuple
getBounds()
Get the grid boundary arrays.

Returns a tuple (latitudeArray, longitudeArray), where latitudeArray is a Numeric array of latitude bounds, and
similarly for longitudeArray.The shape of latitudeArray and longitudeArray depend on the type of
grid:
* for rectangular grids with shape (nlat, nlon), the boundary arrays have shape (nlat,2) and (nlon,2).
* for curvilinear grids with shape (nx, ny), the boundary arrays each have shape (nx, ny, 4).
* for generic grids with shape (ncell,), the boundary arrays each have shape (ncell, nvert) where

nvert is the maximum number of vertices per cell.

For rectilinear grids: If no boundary arrays are explicitly defined (in the file or dataset), the result
depends on the auto− Bounds mode (see cdms.setAutoBounds) and the grid classification mode (see
cdms.setClassifyGrids). By default, autoBounds mode is enabled, in which case the boundary arrays
are generated based on the type of grid. If disabled, the return value is (None,None).
For rectilinear grids: The grid classification mode specifies how the grid type is to be determined.
By default, the grid type (Gaussian, uniform, etc.) is determined by calling grid.classifyInFamily. If
the mode is 'off' grid.getType is used instead

37/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.2

Axis getLatitude()
Get the latitude axis of this grid.

Axis getLongitude()
Get the latitude axis of this grid.

Axis getMask()
Get the mask array of this grid, if any.
Returns a 2−D Numeric array, having the same shape as the grid. If the mask is not explicitly
defined, the return value is None.

Axis getMesh(self, transpose=None)
Generate a mesh array for the meshfill graphics method.
If transpose is defined to a tuple, say (1,0), first transpose latbounds and lonbounds according to the
tuple, in this case (1,0,2).

None setBounds(latBounds, lonBounds, persistent=0)
Set the grid boundaries.
latBounds is a NumPy array of shape (n,2), such that the boundaries of the kth axis value are
[latBounds[k,0],latBounds[k,1]].
lonBounds is defined similarly for the longitude array.
Note: By default, the boundaries are not written to the file or dataset containing the grid (if any).
This allows bounds to be set on read−only files, for regridding. If the optional argument persistent is
set to 1, the boundary array is written to the file.

None setMask(mask, persistent=0)
Set the grid mask. If persistent==1, the mask values are written to the associated file, if any.
Otherwise, the mask is associated with the grid, but no I/O is generated.
mask is a two−dimensional, Boolean−valued Numeric array, having the same shape as the grid.

Horizontal−
Grid

subGridRegion(latInterval, lonInterval)

Create a new grid corresponding to the coordinate region defined by
latInterval, lonInterval.

latInterval and lonInterval are the coordinate intervals for latitude and
longitude, respectively.

Each interval is a tuple having one of the forms:

38/58

(x,y)
(x,y,indicator)
(x,y,indicator,cycle)
None

where x and y are coordinates indicating the interval [x,y), and:

indicator is a two−character string, where the first character is 'c' if the
interval is closed on the left, 'o' if open, and the second character has the
same meaning for the right−hand point. (Default: 'co')

If cycle is specified, the axis is treated as circular with the given cycle
value. By default, if grid.isCircular() is true, the axis is treated as circular
with a default value of 360.0.

An interval of None returns the full index interval of the axis.

If a mask is defined, the subgrid also has a mask corresponding to the
index ranges.
Note: The result grid is not associated with any file or dataset.

Transient−

CurveGrid
toCurveGrid(gridid=None)
Convert to a curvilinear grid. If the grid is already curvilinear, a copy of the grid object is returned.
gridid is the string identifier of the resulting curvilinear grid object. If unspecified, the grid ID is
copied.
Note: This method does not apply to generic grids.

Transient−
GenericGrid

toGenericGrid(gridid=None)
Convert to a generic grid. If the grid is already generic, a copy of the grid is returned.
gridid is the string identifier of the resulting curvilinear grid object. If unspecified, the grid ID is
copied.

Table 2.32 RectGrid Methods, additional to HorizontalGrid Methods

String getOrder()
Get the grid ordering, either "yx" if latitude is the first axis, or "xy" if longitude is the
first axis.

String getType()
Get the grid type, either "gaussian", "uniform", "equalarea", or "generic".

39/58

(Array,Array)
getWeights()
Get the normalized area weight arrays, as a tuple (latWeights, lonWeights). It is
assumed that the latitude and longitude axes are defined in degrees.
The latitude weights are defined as:
latWeights[i] = 0.5 * abs(sin(latBounds[i+1]) −
 sin(latBounds[i]))
The longitude weights are defined as:
lonWeights[i] = abs(lonBounds[i+1] −
 lonBounds[i])/360.0
For a global grid, the weight arrays are normalized such that the sum of the weights
is 1.0
Example: Generate the 2−D weights array, such that weights[i.j] is the fractional area
of grid zone [i,j].
from cdms import MV
latwts, lonwts = grid.getWeights()
weights = MV.outerproduct(latwts, lonwts)
Also see the function area_weights in module pcmdi.weighting.

None setType(gridtype)
Set the grid type.
gridtype is one of "gaussian", "uniform", "equalarea", or "generic".

RectGrid subGrid((latStart,latStop),(lonStart,lonStop))
Create a new grid, with latitude index range [latStart : latStop] and longitude index
range [lonStart : lonStop]. Either index range can also be specified as None,
indicating that the entire range of the latitude or longitude is used. For example,

newgrid = oldgrid.subGrid(None, (lonStart, lonStop))
creates newgrid corresponding to all latitudes, and index range [lonStart:lonStop] of
oldgrid.
If a mask is defined, the subgrid also has a mask corresponding to the index ranges.
Note: The result grid is not associated with any file or dataset.

RectGrid transpose()
Create a new grid, with axis order reversed. The grid mask is also transposed.
Note: The result grid is not associated with any file or dataset.

2.11 Variable

A Variable is a multidimensional data object, consisting of:

a multidimensional data array, possibly masked,•
a collection of attributes•
a domain, an ordered tuple of CoordinateAxis objects.•

A Variable which is contained in a Dataset or CdmsFile is called a persistent variable. Setting a slice of a
persistent Variable writes data to the Dataset or file, and referencing a Variable slice reads data from the
Dataset. Variables may also be transient, not associated with a Dataset or CdmsFile.

Variables support arithmetic operations. The basic Python operators are +,,*,/,**, abs, and sqrt, together with
the operations defined in the MV module. The result of an arithmetic operation is a transient variable, that is,
the axis information is transferred to the result.

The methods subRegion and subSlice return transient variables. In addition, a transient variable may be
created with the cdms.createVariable method. The vcs and regrid module methods take advantage of the

40/58

attribute, domain, and mask information in a transient variable.

Table 2.33 Variable Internal Attributes

Type Name Definition
Dictionaryattributes External attribute dictionary.
String id Variable identifier.

String name_in_file The name of the variable in the file or
files
which represent the dataset. If different
from id, the variable is aliased.

Dataset or parent The dataset or file which contains the
variable.

CdmsFile

Tuple shape The length of each axis of the variable.

Table 2.34 Variable Constructors

Dataset.createVariable(String id, String datatype, List axes)
Create a Variable in a Dataset. This function is not yet implemented.

CdmsFile.createVariable(String id, String datatype, List axesOr−Grids)
Create a Variable in a CdmsFile.

id is the name of the variable.
datatype is the MA or Numeric typecode, for example, MA.Float.
axesOrGrids is a list of Axis and/or Grid objects, on which the variable is defined. Specifying a rectilinear grid is equivalent
to listing the grid latitude and longitude axes, in the order defined for the grid. Note: this argument can either be a list or a

tuple. If the tuple form is used, and there is only one element, it must have a following comma, e.g.: (axisobj,).

cdms.createVariable(array, typecode=None, copy=0, savespace=0,mask=None,
fill_value=None, grid=None, axes=None,attributes=None, id=None)
Create a transient variable, not associated with a file or dataset.

array is the data values: a Variable, masked array, or Numeric array.
typecode is the MA typecode of the array. Defaults to the typecode of array.
copy is an integer flag: if 1, the variable is created with a copy of the array, if 0 the
variable data is shared with array.
savespace is an integer flag: if set to 1, internal Numeric operations will attempt to avoid
silent upcasting.
mask is an array of integers with value 0 or 1, having the same shape as array. array

41/58

elements with a corresponding mask value of 1 are considered invalid, and are not used for
subsequent Numeric operations. The default mask is obtained from array if present,
otherwise is None.
fill_value is the missing value flag. The default is obtained from array if possible,
otherwise is set to 1.0e20 for floating point variables, 0 for integer−valued variables.
grid is a rectilinear grid object.
axes is a tuple of axis objects. By default the axes are obtained from array if present.
Otherwise for a dimension of length n, the default axis has values [0., 1., ..., double(n)].
attributes is a dictionary of attribute values. The dictionary keys must be strings. By
default the dictionary is obtained from array if present, otherwise is empty.
id is the string identifier of the variable. By default the id is obtained from array if
possible, otherwise is set to 'variable_n' for some integer n.

Table 2.35 Variable Methods

Type Definition

 Variable tvar = var[i:j, m:n]Read a slice of data from the file or dataset, resulting in
a transient variable. Singleton dimensions are 'squeezed'
out. Data is returned in the physical ordering defined in
the dataset. The forms of the slice operator are listed in
Table 2.36 on page 102.
var[i:j, m:n] = array
Write a slice of data to the external dataset. The forms of
the slice operator are listed in Table 2.21 on page 32.
(Variables in CdmsFiles only)

 Variable tvar = var(selector)Calling a variable as a function reads the region of data
defined by the selector. The result is a transient variable,
unless raw=1 keyword is specified. See "Selectors" on
page 103.

 None assignValue(Array ar)
Write the entire data array. Equivalent to var[:] = ar.
(Variables in CdmsFiles only).

 Variable astype(typecode)
Cast the variable to a new datatype. Typecodes are as for
MV, MA, and Numeric modules.

 Variable clone(copyData=1)Return a copy of a transient variable.

If copyData is 1 (the default) the variable data is copied
as well. If copyData is 0, the result transient variable
shares the original transient variables data array.

42/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.36
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.21
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#2.11.1_Selectors

Transient
Variable

crossSectionRegrid(newLevel, newLatitude,
method="log", missing=None, order=None)
Return a lat/level vertical cross−section regridded to a
new set of latitudes newLatitude and levels newLevel.
The variable should be a function of latitude, level, and
(optionally) time.
newLevel is an axis of the result pressure levels.
newLatitude is an axis of the result latitudes.
method is optional, either "log" to interpolate in the log
of pressure (default), or "linear" for linear interpolation.
missing is a missing data value. The default is
var.getMissing()
order is an order string such as "tzy" or "zy". The default
is var.getOrder() See also: regrid, pressureRegrid.

Axis getAxis(n)

Get the n−th axis.

n is an integer.

List getAxisIds()
Get a list of axis identifiers.

Integer getAxisIndex(axis_spec)
Return the index of the axis specificed by axis_spec.
Return −1 if no match.

axis_spec is a specification as defined for getAxisList

 List
getAxisList(axes=None, omit=None, order=None)
Get an ordered list of axis objects in the domain of the
variable..

If axes is not None, include only certain axes. Otherwise
axes is a list of specifications as described below. Axes
are returned in the order specified unless the order
keyword is given.

If omit is not None, omit those specified by an integer
dimension number. Otherwise omit is a list of
specifications as described below.

43/58

order is an optional string determining the output order.

Specifications for the axes or omit keywords are a list,
each element having one of the following forms:

an integer dimension index, starting at 0.•
a string representing an axis id or one of the
strings 'time', 'latitude', 'lat', 'longitude', 'lon',
'lev' or 'level'.

•

a function that takes an axis as an argument and
returns a value. If the value returned is true, the
axis matches.

•

an axis object; will match if it is the same object
as axis.

•

order can be a string containing the characters t,x,y,z,
or −. If a dash ('−') is given, any elements of the result
not chosen otherwise are filled in from left to right with
remaining candidates.

 List
getAxisListIndex(axes=None, omit=None,
order=None)
Return a list of indices of axis objects. Arguments are as
for getAxisList.

List getDomain() Get the domain. Each element of the list
is itself a tuple of the form

(axis,start,length,true_length) where axis is an axis
object, start is the start index of the domain relative to
the axis object, length is the length of the axis, and
true_length is the actual number of (defined) points in
the domain.
See also: getAxisList.

Horizontal−GridgetGrid() Return the associated grid, or None if the
variable is not gridded.

Axis getLatitude()

Get the latitude axis, or None if not found.

Axis getLevel()

Get the vertical level axis, or None if not found.

44/58

Axis getLongitude()

Get the longitude axis, or None if not found.

Various
getMissing()

Get the missing data value, or None if not found.

String getOrder()

Get the order string of a spatio−temporal variable. The
order string specifies the physical ordering of the data. It
is a string of characters with length equal to the rank of
the variable, indicating the order of the variable's time,
level, latitude, and/or longitude axes. Each character is
one of:
't': time
'z': vertical level
'y': latitude
'x': longitude
'−': the axis is not spatio−temporal.
Example: A variable with ordering "tzyx" is
4−dimensional, where the ordering of axes is (time, level,
latitude, longitude).
Note: The order string is of the form required for the
order argument of a regridder function.

List getPaths(*intervals)

Get the file paths associated with the index region
specified by intervals.
intervals is a list of scalars, 2−tuples representing [i,j),
slices, and/or Ellipses. If no argument(s) are present, all
file paths associated with the variable are returned.
Returns a list of tuples of the form (path,slicetuple), where
path is the path of a file, and slicetuple is itself a tuple of
slices, of the same length as the rank of the variable,
representing the portion of the variable in the file
corresponding to intervals.

Note: This function is not defined for transient variables.

Axis getTime()

Get the time axis, or None if not found.

Integer len(var)

45/58

The length of the first dimension of the variable. If the
variable is zero−dimensional (scalar), a length of 0 is
returned.

Note: size() returns the total number of elements.

Transient
Variable

pressureRegrid (newLevel, method="log",
missing=None, order=None)

Return the variable regridded to a new set of pressure
levels newLevel. The variable must be a function of
latitude, longitude, pressure level, and (optionally) time.

newLevel is an axis of the result pressure levels.

method is optional, either "log" to interpolate in the log
of pressure (default), or "linear" for linear interpolation.

missing is a missing data value. The default is
var.getMissing()

order is an order string such as "tzyx" or "zyx". The
default is var.getOrder()

See also: regrid, crossSectionRegrid.

Integer rank()

46/58

The number of dimensions of the variable.

 Transient

regrid (togrid, missing=None, order=None, Variable
mask=None)
Return the variable regridded to the horizontal grid
togrid.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of
the array. It has the form returned from
variable.getOrder(). For example, the string "tzyx"
indicates that the dimension order of array is (time,
level, latitude, longitude). If unspecified, the function
assumes that the last two dimensions of array match the
input grid.

mask is a Numeric array, of datatype Integer or Float,
consisting of ones and zeros. A value of 0 or 0.0
indicates that the corresponding data value is to be
ignored for purposes of regridding. If mask is
two−dimensional of the same shape as the input grid, it
overrides the mask of the input grid. If the mask has
more than two dimensions, it must have the same shape
as array. In this case, the missing data value is also
ignored. Such an n−dimensional mask is useful if the
pattern of missing data varies with level (e.g., ocean
data) or time. Note: If neither missing or mask is set, the
default mask is obtained from the mask of the array if
any.

See also: crossSectionRegrid, pressureRegrid.

 None setAxis(n, axis)
Set the n−th axis (0−origin index) of to a copy of axis.

 None
setAxisList(axislist)
Set all axes of the variable. axislist is a list of axis
objects.

 None setMissing(value)
Set the missing value.

47/58

 Integer size()
Number of elements of the variable.

 Variable

subRegion(*region, time=None, level=None,
latitude=None, longitude=None, squeeze=0, raw=0)
Read a coordinate region of data, returning a transient
variable. A region is a hyperrectangle in coordinate
space.

region is an argument list, each item of which specifies
an interval of a coordinate axis. The intervals are listed
in the order of the variable axes. If trailing dimensions
are omitted, all values of those dimensions are retrieved.
If an axis is circular (axis.isCircular() is true) or cycle
is specified (see below), then data will be read with
wraparound in that dimension. Only one axis may be
read with wraparound. A coordinate interval has one of
the forms listed in Table 2.37 on page 102. Also see
axis.mapIntervalExt.

The optional keyword arguments time, level, latitude,
and longitude may also be used to specify the dimension
for which the interval applies. This is particularly useful
if the order of dimensions is not known in advance. An
exception is raised if a keyword argument conflicts with
a positional region argument.

The optional keyword argument squeeze determines
whether or not the shape of the returned array contains
dimensions whose length is 1; by default this argument
is 0, and such dimensions are not 'squeezed out'.

The optional keyword argument raw specifies whether
the return object is a variable or a masked array. By
default, a transient variable is returned, having the axes
and attributes corresponding to2,3 the region read. If
raw=1, an MA masked array is returned, equivalent to
the transient variable without the axis and attribute
information.

 Variable subSlice(*specs, time=None, level=None,
latitude=None, longitude=None, squeeze=0, raw=0)
Read a slice of data, returning a transient variable. This
is a functional form of the slice operator [] with the
squeeze option turned off.

specs is an argument list, each element of which
specifies a slice of the corresponding dimension. There
can be zero or more positional arguments, each of the
form:

48/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37

(a) a single integer n, meaning slice(n, n+1)•
(b) an instance of the slice class•
 (c) a tuple, which will be used as arguments to
create a slice

•

(d) ':', which means a slice covering that entire
dimension

•

(e) Ellipsis (...), which means to fill the slice list
with ':' leaving only enough room at the end for
the remaining positional arguments

•

 (f) a Python slice object, of the form slice(i,j,k)•

If there are fewer slices than corresponding dimensions,
all
values of the trailing dimensions are read.

The keyword arguments are defined as in subRegion.
There must be no conflict between the positional
arguments and the keywords.

In (a)−(c) and (f), negative numbers are treated as offsets
from
the end of that dimension, as in normal Python indexing.

 String typecode()
The Numeric datatype identifier.

Example: Get a region of data.

Variable ta is a function of (time, latitude, longitude). Read data corresponding to all times, latitudes −45.0 up
to but not including+45.0, longitudes 0.0 through and including longitude 180.0:

data = ta.subRegion(':', (−45.0,45.0,'co'), (0.0, 180.0))

or equivalently:

data = ta.subRegion(latitude=(−45.0,45.0,'co'), longitude=(0.0,
180.0)

Read all data for March, 1980:

data = ta.subRegion(time=('1980−3','1980−4','co'))

Table 2.36 Variable Slice Operators

[i] The ith element, zero−origin indexing.

[i:j] The ith element through, but not including, element j

[i:] The ith element through the end

49/58

[:j] The beginning element through, but not including,
element j

[:] The entire array

[i:j:k] Every kth element

[i:j, m:n] Multidimensional slice

[i, ..., m] (Ellipsis) All dimensions between those specified.

[−1] Negative indices 'wrap around'. −1 is the last element.

Table 2.37 Index and Coordinate Intervals

Interval Definition Example Interval Definition Example

x single point, such that axis[i]==x In
general x is a scalar. If the axis is a time
axis, x may also be a cdtime relative time
type, component time type, or string of the
form 'yyyy−mm−dd hh:mi:ss' (where
trailing fields of the string may be omitted.

180.0
cdtime.reltime(48,"hour
s since 1980−1")
'1980−1−3'

(x,y) indices i such that x <= axis[i] <= y (−180,180)

(x,y,'co')
x <= axis[i] < y The third item is defined
as in mapInterval.

(−90,90,'cc')

(x,y,'co',cycle)x<= axis[i] < y, with wraparound Note: It
is not necesary to specify the cycle of a
circular longitude axis, that is, for which
axis.isCircular() is true.

(180, 180, 'co',
360.0)

slice(i,j,k) slice object, equivalent to i:j:k in a slice
operator. Refers to the indices i, i+k, i+2k,
... up to but not including index j. If i is
not specified or is None it defaults to 0. If
j is not specified or is None it defaults to
the length of the axis. The stride k defaults
to 1. k may be negative.

slice(1,10)
slice(,,−1)
reverses the
direction of the
axis.

':' all axis values of one dimension

Ellipsis all values of all intermediate axes

2.11.1 Selectors
A selector is a specification of a region of data to be selected from a variable. For example, the statement

x = v(time='1979−1−1', level=(1000.0,100.0))

means 'select the values of variable v for time '1979−1−1' and levels 1000.0 to 100.0 inclusive, setting x to the
result.' Selectors are generally used to represent regions of space and time.

50/58

The form for using a selector is

result = v(s)

where v is a variable and s is the selector. An equivalent form is

 result = f('varid', s)

where f is a file or dataset, and 'varid' is the string ID of a variable.

A selector consists of a list of selector components. For example, the selector

time='1979−1−1', level=(1000.0,100.0)

has two components: time='1979−1−1', and level=(1000.0,100.0). This illustrates that selector components
can be defined with keywords, using the form:

keyword=value

Note that for the keywords time, level, latitude, and longitude, the selector can be used with any variable. If
the corresponding axis is not found, the selector component is ignored. This is very useful for writing general
purpose scripts. The required keyword overrides this behavior. These keywords take values that are
coordinate ranges or index ranges as defined in Table 2.37 on page 102.

The following keywords are available: Another form of selector components is the positional form, where the
component order corresponds to the axis order of a variable. For example:

Table 2.38 Selector keywords

Keyword Description Value

axisid Restrict the axis with ID axisid
to a value or range of values.

See Table 2.37 on page
102

grid Regrid the result to the grid. Grid object

latitude Restrict latitude values to a
value or range. Short form: lat

See Table 2.37 on page
102

level Restrict vertical levels to a
value or range. Short form: lev

See Table 2.37 on page
102

longitude Restrict longitude values to a
value or range. Short form: lon

See Table 2.37 on page
102

order Reorder the result. Order string, e.g., "tzyx"

raw Return a masked array
(MA.array) rather than a
transient variable.

0: return a transient
variable (default); =1:
return a masked array.

required Require that the axis IDs be List of axis identifiers.
present.

squeeze Remove singleton dimensions 0: leave singleton dimen

51/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37

from the result. sions (default); 1:
remove
singleton dimensions.

time Restrict time values to a value
or

See Table 2.37 on page
102

range.

Another form of selector components is the
positional form, where the component
order corresponds to the axis order of a variable.
For example:
x9 = hus(('1979−1−1','1979−2−1'),1000.0)

reads data for the range ('1979−1−1','1979−2−1') of the first axis, and coordinate value 1000.0 of the second
axis. Non−keyword arguments of the form(s) listed in Table 2.37 on page 102 are treated as positional. Such
selectors are more concise, but not as general or flexible as the other types described in this section.

Selectors are objects in their own right. This means that a selector can be defined and reused, independent of a
particular variable. Selectors are constructed using the cdms.selectors.Selector class. The constructor takes an
argument list of selector components. For example:

from cdms.selectors import Selector
sel = Selector(time=('1979−1−1','1979−2−1'), level=1000.)
x1 = v1(sel)
x2 = v2(sel)

For convenience CDMS provides several predefined selectors, which can be used directly or can be combined
into more complex selectors. The selectors time, level, latitude, longitude, and required are equivalent to
their keyword counterparts. For example:

from cdms import time, level
x = hus(time('1979−1−1','1979−2−1'), level(1000.))

and

x = hus(time=('1979−1−1','1979−2−1'), level=1000.)

are equivalent. Additionally, the predefined selectors latitudeslice, longitudeslice, levelslice, and timeslice
take arguments (startindex, stopindex[, stride]):

from cdms import timeslice, levelslice
x = v(timeslice(0,2), levelslice(16,17))

Finally, a collection of selectors is defined in module cdutil.region:

52/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch2_cdms_4.0.html#Table_2.37

from cdutil.region import *
NH=NorthernHemisphere=domain(latitude=(0.,90.)
SH=SouthernHemisphere=domain(latitude=(−90.,0.))
Tropics=domain(latitude=(−23.4,23.4))
NPZ=AZ=ArcticZone=domain(latitude=(66.6,90.))
SPZ=AAZ=AntarcticZone=domain(latitude=(−90.,−66.6))

Selectors can be combined using the & operator, or by refining them in the call:

from cdms.selectors import Selector
from cdms import level
sel2 = Selector(time=('1979−1−1','1979−2−1'))
sel3 = sel2 & level(1000.0)
x1 = hus(sel3)
x2 = hus(sel2, level=1000.0)

2.11.2 Selector examples

CDMS provides a variety of ways to select or slice data. In the following examples, variable hus is contained
in file sample.nc, and is a function of (time, level, latitude, longitude). Time values are monthly starting at
1979−1−1. There are 17 levels, the last level being 1000.0. The name of the vertical level axis is 'plev'. All the
examples select the first two times and the last level. The last two examples remove the singleton level
dimension from the result array.

import cdms
f = cdms.open('sample.nc')
hus = f.variables['hus']

Keyword selection
x = hus(time=('1979−1−1','1979−2−1'), level=1000.)
Interval indicator (see mapIntervalExt)
x = hus(time=('1979−1−1','1979−3−1','co'), level=1000.)

Axis ID (plev) as a keyword
x = hus(time=('1979−1−1','1979−2−1'), plev=1000.)

Positional
x9 = hus(('1979−1−1','1979−2−1'),1000.0)

Predefined selectors
from cdms import time, level
x = hus(time('1979−1−1','1979−2−1'), level(1000.))

from cdms import timeslice, levelslice
x = hus(timeslice(0,2), levelslice(16,17))

Call file as a function
x = f('hus', time=('1979−1−1','1979−2−1'), level=1000.)

Python slices

53/58

x = hus(time=slice(0,2), level=slice(16,17))

Selector objects
from cdms.selectors import Selector
sel = Selector(time=('1979−1−1','1979−2−1'), level=1000.)
x = hus(sel)

sel2 = Selector(time=('1979−1−1','1979−2−1'))
sel3 = sel2 & level(1000.0)
x = hus(sel3)
x = hus(sel2, level=1000.0)

Squeeze singleton dimension (level)
x = hus[0:2,16]
x = hus(time=('1979−1−1','1979−2−1'), level=1000., squeeze=1)

f.close()

2.12 Examples

In this example, two datasets are opened, containing surface air temperature ('tas') and upper−air temperature
('ta') respectively. Surface air temperature is a function of (time, latitude, longitude). Upper−air temperature is
a function of (time, level, latitude, longitude). Time is assumed to have a relative representation in the datasets
(e.g., with units 'months since basetime').

Data is extracted from both datasets for January of the first input year through December of the second input
year. For each time and level, three quantities are calculated: slope, variance, and correlation. The results are
written to a netCDF file. For brevity, the functions corrCoefSlope and removeSeasonalCycle are omitted.

 1. import cdms
 import MV

 # Calculate variance, slope, and correlation of
 # surface air temperature with upper air temperature
 # by level, and save to a netCDF file. 'pathTa' is the location of
 # the file containing 'ta', 'pathTas' is the file with contains
'tas'.
 # Data is extracted from January of year1 through December
of year2.
 def
ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,month1,month2):

 # Open the files for ta and tas
 fta = cdms.open(pathTa)
 ftas = cdms.open(pathTas)

54/58

2. # Get upper air temperature
 taObj = fta['ta']
 levs = taObj.getLevel()

3. # Get the surface temperature for the closed interval
[time1,time2]
 tas = ftas('tas', time=(month1,month2,'cc'))

 # Allocate result arrays
 newaxes = taObj.getAxisList(omit='time')
 newshape = tuple([len(a) for a in newaxes])
4. cc = MV.zeros(newshape, typecode=MV.Float, axes=newaxes,
id='correlation')
 b = MV.zeros(newshape, typecode=MV.Float, axes=newaxes,
id='slope')
 v = MV.zeros(newshape, typecode=MV.Float, axes=newaxes,
id='variance')

 # Remove seasonal cycle from surface air temperature
 tas = removeSeasonalCycle(tas)

 # For each level of air temperature, remove seasonal cycle
 # from upper air temperature, and calculate statistics
5. for ilev in range(len(levs)):

 ta = taObj(time=(month1,month2,'cc'), \

 level=slice(ilev, ilev+1), squeeze=1)
 ta = removeSeasonalCycle(ta)
 cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)
 v[ilev] = MV.sum(ta**2)/(1.0*ta.shape[0])

 # Write slope, correlation, and variance variables
 6. f = cdms.open('CC_B_V_ALL.nc','w')
 f.title = filtered

55/58

 f.write(b)
 f.write(cc)
 f.write(v)
 f.close()
 7. if __name__=='__main__':
 pathTa = '/pcmdi/cdms/sample/ccmSample_ta.xml'
 pathTas = '/pcmdi/cdms/sample/ccmSample_tas.xml'
 # Process Jan80 through Dec81
 ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,'80−1','81−12')

Notes:

Two modules are imported, cdms, and MV. MV implements arithmetic functions.1.
taObj is a file (persistent) variable. At this point, no data has actually been read. This happens when
the file variable is sliced, or when the subRegion function is called. levs is an axis.

2.

Calling the file like a function reads data for the given variable and time range. Note that month1 and
month2 are time strings.

3.

In contrast to taObj, the variables cc, b, and v are transient variables, not associated with a file. The
assigned names are used when the variables are written.

4.

Another way to read data is to call the variable as a function. The squeeze option removes singleton
axes, in this case the level axis.

5.

Write the data. Axis information is written automatically.6.
This is the main routine of the script. pathTa and pathTas pathnames. Data is processed from
January 1980 through December 1981.

7.

In the next example, the pointwise variance of a variable over time is calculated, for all times in a dataset. The
name of the dataset and variable are entered, then the variance is calculated and plotted via the vcs module.

 #!/usr/bin/env python
 #
 # Calculates gridpoint total variance
 # from an array of interest
 #

 import cdms
 from MV import *

 # Wait for return in an interactive window

 def pause():
 print Hit return to continue: ,
 line = sys.stdin.readline()

8. # Calculate pointwise variance of variable over time
 # Returns the variance and the number of points
 # for which the data is defined, for each grid point
 def calcVar(x):

56/58

 # Check that the first axis is a time axis

 firstaxis = x.getAxis(0)
 if not firstaxis.isTime():
 raise 'First axis is not time, variable:', x.id

 n = count(x,0)
 sumxx = sum(x*x)
 sumx = sum(x)
 variance = (n*sumxx −(sumx * sumx))/(n * (n−1.))

 return variance,n

 if __name__=='__main__':
 import vcs, sys

 print 'Enter dataset path [/pcmdi/cdms/obs/erbs_mo.xml]: ',
 path = string.strip(sys.stdin.readline())
 if path=='': path='/pcmdi/cdms/obs/erbs_mo.xml'

9. # Open the dataset
 dataset = cdms.open(path)

 # Select a variable from the dataset
 print 'Variables in file:',path
 varnames = dataset.variables.keys()
 varnames.sort()
 for varname in varnames:

var = dataset.variables[varname]
if hasattr(var,'long_name'):
 long_name = var.long_name
elif hasattr(var,'title'):
 long_name = var.title
else:
 long_name = '?'

 print '%−10s: %s'%(varname,long_name)
 print 'Select a variable: ',
10. varname = string.strip(sys.stdin.readline())
 var = dataset(varname)
 dataset.close()

 # Calculate variance, count, and set attributes
 variance,n = calcVar(var)
 variance.id = 'variance_%s'%var.id
 n.id = 'count_%s'%var.id
 if hasattr(var,'units'):

 variance.units = '(%s)^2'%var.units

57/58

 # Plot variance
 w=vcs.init()
11. w.plot(variance)
 pause()
 w.clear()
 w.plot(n)
 pause()
 w.clear()

The result of running this script is as follows:

% calcVar.py
Enter dataset path [/pcmdi/cdms/sample/obs/erbs_mo.xml]:

Variables in file: /pcmdi/cdms/sample/obs/erbs_mo.xml
albt : Albedo TOA [%]
albtcs : Albedo TOA clear sky [%]
rlcrft : LW Cloud Radiation Forcing TOA [W/m^2]
rlut : LW radiation TOA (OLR) [W/m^2]
rlutcs : LW radiation upward TOA clear sky [W/m^2]
rscrft : SW Cloud Radiation Forcing TOA [W/m^2]
rsdt : SW radiation downward TOA [W/m^2]
rsut : SW radiation upward TOA [W/m^2]
rsutcs : SW radiation upward TOA clear sky [W/m^2]
Select a variable: albt

<The variance is plotted>

Hit return to continue:

<The number of points is plotted>

Notes:

n = count(x, 0) returns the pointwise number of valid values, summing across axis 0, the first axis.
count is an MV function.

8.

dataset is a Dataset or CdmsFile object, depending on whether a .xml or .nc pathname is entered.
dataset.variables is a dictionary mapping variable name to file variable.

9.

var is a transient variable.10.
Plot the variance and count variables. Spatial longitude and latitude information are carried with the
computations, so the continents are plotted correctly.

11.

Contents Previous Next

58/58

http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch1_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch3_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/toc_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch1_cdms_4.0.html
http://www-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch3_cdms_4.0.html

	PCMDI Software Portal - CHAPTER 2

